
The Meta-Object Facility (MOF)

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

22900
图章

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open source
software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!3

Intended Audience

➢ Have some experience with Model-Driven
Development.

➢ Are aware of, but may not be familiar with,
the relevant OMG/MDD standards.

➢ Are interested in learning more about
language development and implementation.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!4

Refresher
➢ Recall the OMG metamodel architecture.

metamodel

model

“the real world"

metameta
model

Meta-Object Facility (MOF)

The UML metamodel and other MM’s

UML models and other M’s

Various usages of these models

M0

M1

M2

M3

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!5

MOF

➢ MOF = Meta-Object Facility
➢ A metadata management framework.
➢ A language to be used for defining languages.

➢ i.e., it is an OMG-standard metamodelling language.
➢ The UML metamodel is defined in MOF.

➢ MOF 2.0 shares a common core with UML 2.0.
➢ Simpler rules for modelling metadata.
➢ Easier to map from/to MOF.
➢ Broader tool support for metamodelling (i.e., any UML 2.0 tool

can be used).

➢ How has MOF come to be?

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!6

Fragments of a UML metamodel

UML

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!7

Stages in the Evolution of Languages at the OMG.

UML MOF

UMLaModel

aModel

MOF

UML

UML_for_CORBA

aModel

SPEM Workflow etc.

Common Warehouse
Metadata

Action language

(a) (b) (c)

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!8

The MDA meta-model stack

- One unique Meta-Meta-model (the MOF)
- An important library of compatible Meta-models
- Each of the models
 is defined in the language of its unique meta-model

Université de NANTES

M1, M2 & M3 spaces

M3

M2

M1

M2

M1

M2

M1 M1M1

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!9

MOF Evolution

➢ MOF has evolved through several versions.

➢ MOF 1.x is the most widely supported by tools.

➢ MOF 2.0 is the current standard, and it has been
substantially influenced by UML 2.0.

➢ MOF 2.0 is also critical in supporting
transformations, e.g., QVT and Model-to-text.

➢ We will carefully clarify which version of MOF we
are presenting.

➢Important lessons can be learned by considering each version.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!10

Principal Diagram - MOF 1.x

...

Namespace

Classifier

MOF

Contains

Model

ModelElement

...

0..*

0..1

Class

basedOn

meta-entity

1

0..* entity

instanceOf

Package1

0..*
model

meta-model

containedElement

container

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!11

MOF 1.x

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!12

MOF 1.x Key Abstract Classes
➢ModelElement is the common base Class of all M3-level Classes.

➢Every ModelElement has a name

➢Namespace is the base Class for all M3-level Classes that need to act
as containers

➢GeneralizableElement is the base Class for all M3-level Classes that
support generalization (i.e., inheritance in OOP)

➢TypedElement is the base Class for M3-level Classes such as
Attribute, Parameter, and Constant
➢Their definition requires a type specification

➢Classifier is the base Class for all M3-level Classes that (notionally)
define types.
➢Examples of Classifier include Class and DataType

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!13

The MOF 1.x Model - 
Main Concrete Classes

➢The key concrete classes (or meta-metaclasses) of
MOF are as follows:

➢Class
➢Association
➢Exception (for defining abnormal behaviours)
➢Attribute
➢Constant
➢Constraint

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!14

The MOF 1.x Model: Key associations
➢Contains: relates a ModelElement to the Namespace

that contains it

➢Generalizes: relates a GeneralizableElement to its
ancestors (superclass and subclass)

➢IsOfType: relates a TypedElement to the Classifier
that defines its type
- An object is an instance of a class

➢DependsOn: relates a ModelElement to others that its
definition depends on
- E.g. a package depends on another package

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!15

MOF 2.0 Relationships

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!16

MOF 2.0 Relationships (II)

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!17

MOF 2.0 Structure

➢ MOF is separated into Essential MOF (EMOF) and
Complete MOF (CMOF).

➢ EMOF corresponds to facilities found in OOP and
XML.
➢ Easy to map EMOF models to JMI, XMI, etc.

➢ CMOF is what is used to specify metamodels for
languages such as UML 2.0.
➢ It is built from EMOF and the core constructs of UML 2.0.
➢ Really, both EMOF and CMOF are based on variants of UML

2.0.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!18

EMOF Core Classes

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!19

CMOF Core Constructs

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!20

MOF Implementations

➢ Most widely known/used is EMF/ECore within Eclipse.
➢ It is mostly compatible with MOF 1.x, and allows importing

EMOF metamodels via XMI.
➢ The XMF-Mosaic tool from Xactium implements ExMOF

(Executable MOF) which subsets and extends MOF 1.x.
➢ UML2MOF from Sun is a transformation from UML

metamodels to MOF 1.x metamodels (with some bugs).
➢ Sun MDR implementation.
➢ Commercial implementations from Adaptive, Compuware,

possibly MetaMatrix, MEGA, Unicorn.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!21

Towards Tool Support

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!22

1. It’s not totally vaporware -- tools exist!
2. Programmers know that generating repeated code is

eminently feasible.
• MDA will pave the way for even more complex systems
• The Generative Programming people have realised this for

ages.

3. Smart people recognize many of the arguments
against MDA were also used to oppose high-level
languages vs. assembly language

Why Should We Care about MDA?

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!23

➢ Contrary to most programmers’ beliefs, modelling can be useful
for more than just documentation

➢ Just about every program we write manipulates some data
model
➢ It might be defined using Java, UML, XML Schemas, or some other

definition language
➢ EMF aims to extract this intrinsic "model" and generate some

of the implementation code
➢ Can be a tremendous productivity gain.

➢ EMF is one implementation of MOF (though it has differences).
➢ We cannot claim that EMF = MOF!

MDD with EMF

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!24

➢ Specification of an application’s data
➢ Object attributes
➢ Relationships (associations) between objects
➢ Operations available on each object
➢ Simple constraints (e.g., multiplicity) on objects and

relationships
➢ Essentially the Class Diagram subset of UML

EMF Model Definition

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!25

➢ EMF models can be defined in (at least) three
ways:
1. Java interfaces
2. UML Class Diagram
3. XML Schema

➢ Choose the one matching your perspective or
skills, and EMF can generate the others as well
as the implementation code

EMF Model Definition

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!26

public interface PurchaseOrder {
 String getShipTo();
 void setShipTo(String value);
 String getBillTo();
 void setBillTo(String value);
 List getItems(); // List of Item
}

public interface Item {
 String getProductName();
 void setProductName(String value);
 int getQuantity();
 void setQuantity(int value);
 float getPrice();
 void setPrice(float value);
}

EMF Model Definition  
Java interfaces

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!27

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EMF Model Definition - UML class
diagrams

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!28

<xsd:complexType name="PurchaseOrder">
 <xsd:sequence>
 <xsd:element name="shipTo" type="xsd:string"/>
 <xsd:element name="billTo" type="xsd:string"/>
 <xsd:element name="items" type="PO:Item"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/
>
 <xsd:element name="quantity" type="xsd:int"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
</xsd:complexType>

EMF Model Definition - XML

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!29

Unifying Java, XML, and UML technologies

EMF Model Definition

➢ All three forms provide the same information
➢ Different visualization/representation
➢ The application’s “model” of the structure

➢ From a model definition, EMF can generate:
➢ Java implementation code, including UI
➢ XML Schemas
➢ Eclipse projects and plug-ins

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!30

EMF Architecture 
Model Import and Generation

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Generator
features:

➢ Customizable
JSP-like
templates
(JET)

➢ Command-line
or integrated
with Eclipse
JDT

➢ Fully supports
regeneration
and merge

Java
editor* * requires Eclipse to

run

Java
model

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!31

➢ Ecore is EMF’s model of a model (metamodel)
➢ Persistent representation is XMI

EMF Architecture - Ecore

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!32

EMF Architecture - 
PurchaseOrder Ecore Model

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!33

<eClassifiers xsi:type="ecore:EClass"
 name="PurchaseOrder">
 <eReferences name="items" eType="#//Item"
 upperBound="-1" containment="true"/>
 <eAttributes name="shipTo"
 eType="ecore:EDataType http:...Ecore#//EString"/
>
 <eAttributes name="billTo"
 eType="ecore:EDataType http:...Ecore#//EString"/
>
</eClassifiers>

EMF Architecture - 
PurchaseOrder Ecore XMI

➢ Alternate serialization format is EMOF
➢ Part of MOF 2.0 Standard as we saw earlier

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!34

EMF Dynamic Architecture
➢Given an Ecore model, EMF also supports

dynamic manipulation of instances
➢No generated code required
➢Dynamic implementation of reflective EObject

API provides same runtime behavior as generated
code

➢Also supports dynamic subclasses of generated
classes

➢All EMF model instances, whether generated
or dynamic, are treated the same by the
framework

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!35

EMF Architecture - Users

➢ IBM WebSphere/Rational product family
➢ Other Eclipse projects (XSD, UML2, VE,

Hyades)
➢ ISV’s (TogetherSoft, Ensemble, Versata,

Omondo, and more)
➢ SDO reference implementation
➢ Large open source community

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!36

public String getShipTo() {
 return shipTo;
}

public void setShipTo(String newShipTo) {
 String oldShipTo = shipTo;
 shipTo = newShipTo;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, ...);
}

Code Generation - Feature Change

➢Efficient notification from “set” methods
➢Observer Design Pattern

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!37

public interface EObject {
 Object eGet(EStructuralFeature f);
 void eSet(EStructuralFeature f, Object v);
 ...
}

Code Generation
➢All EMF classes implement interface

EObject
➢Provides an efficient API for manipulating

objects reflectively
➢Used by the framework (e.g., generic serializer,

copy utility, generic editing commands, etc.)
➢Also key to integrating tools and applications

built using EMF

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!38

Related Standards

➢ There is actually a family of standards related to MOF.
➢ MOF 2.0 Versioning:

➢ for managing multiple, co-existing versions of metadata, and
allowing inclusion in different systems in different
configurations.

➢ MOF 2.0 Facility and Object Lifecycle:
➢ Models object creation/deletion, move, comparison
➢ Also models events that may be interesting.

➢ MOF 2.0 QVT.
➢ MOF Model-to-Text
➢ XMI.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!39

MOF 2.0 Action Semantics

➢ What is Action Semantics?
➢ Current practice and limitations in capturing behaviour

in MOF models
➢ MOF 2.0 Action Semantics

➢ MOF AS Abstract syntax
➢ Towards a MOF AS Concrete syntax

➢ Benefits, i.e., programmatic manipulation of models.
➢ Note: not a standard, evolving work, currently building

a prototype implementation in Epsilon framework.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!40

What is Action Semantics?

➢ Structural semantics capture the structural
properties of a model
➢ i.e., the model elements and their structural relationships

➢ Action semantics capture the behavior of a model
➢ i.e., how the model behaves

➢ Actions semantics has been proposed for UML 2.0.
➢ Variants appear in Executable UML work from Mellor et al.

➢ This has not addressed action semantics at the meta-
metalevel, i.e., MOF 2.0.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!41

Capturing behaviour in MOF

➢In MOF models, behaviour is defined through
operations

➢OCL post-conditions can be used to define
effects of the execution of an operation on
the model
➢Post-conditions define the effects rather than how

they are achieved
➢Allows flexibility in the implementation of the body

of the operation

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!42

Limitations of post-conditions

➢ Cannot capture invocation of other operations
➢ i.e., how do you say, in the post-condition, that another

operation must be triggered?
➢ This requires some notion of call semantics.

➢ Cannot capture algorithmic details necessary for
efficiency.
➢ e.g., you can specify that an operation sorts data, but how do

you capture time bounds?
➢ Insufficient for simulation/execution

➢ Only some post-conditions can actually be simulated (OCL in
general is not fully executable).

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!43

MOF Action Semantics (AS)

➢Extend MOF so that the we can capture
actions performed
➢by invocation of operations
➢as response to model events
➢e.g. instance creation, attribute value update

➢In order to achieve this we need
➢Abstract syntax
➢Concrete syntax (that implements the abstract

syntax)

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!44

Actions

➢Perform mathematical computations (Arithmetic, String,
Boolean expressions)

➢Control execution flow (if, for, while control structures etc)
➢Create/Select/Delete object instances
➢Read/Write instance attribute values
➢Create/Delete relationships instances
➢Navigate relationships
➢Invoke other operations

➢cf., UML 2.0 Action Semantics

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!45

MOF AS Abstract Syntax

➢Use the existing UML AS abstract syntax
as a base
➢Port the “actions” and “activities” package of the

“UML” package into the “MOF” package
➢Update the “operation” meta-class
➢Update ported meta-classes to match MOF

modelling elements (instead of UML)
➢Remove classes that do not fit the MOF level of

abstraction

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!46

Abstract Syntax: Package

➢ AS is a restriction of UML 2.0 AS.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!47

Abstract Syntax

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!48

Abstract Syntax Details
➢ An Operation has multiple possible behaviours.

➢ Activities are behaviours, and the activity graph is captured
using ActivityNode and ActivityEdge.

➢ A special kind of ActivityNode is an ExecutableNode, which
may have a number of ExceptionHandlers, each of which also
have ExecutableNodes.

➢ An Action is both an ActivityNode and an
ExecutableNode.
➢ Generalizations of Action will provide the computational

behaviour needed to write action programs.
➢ Finally, an Action has input and output PINs.

➢ Concrete syntax for the MOF action semantics is
contained within the OpaqueBehavior.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!49

AS Notes

➢ Possible to simplify this structure further by inferring
the Activity graph (i.e., ActivityNode and
ActivityEdge):
➢ Actions know their precursor and successor, which can be used

to implicitly extract the information encoded in nodes and
edges.

➢ This closely mimics trace semantics, as seen, for example in
Communicating Sequential Processes.

➢ Computational behaviour is captured via generalization
of the Action metaclass.
➢ UML 2.0 contains approx 60 metaclasses for this.
➢ We can add everything - trivially - but then MOF 2.0 + AS is 170

or so classes; is this worthwhile?

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!50

MOF AS Concrete Syntax
➢Abstract AS is useful as foundation but insufficient.
➢Need a concrete language
➢We propose the use of a procedural (C-style) language like

➢Kabira Action Semantics, BridgePoint Object Action Language, KC
Action Specification Language

➢… but instead of proprietary model-querying expressions,
integrate support for OCL statements

➢No point creating a new language until UML 2.0 is
stabilized.
➢However, we have developed the Epsilon Object Language which

could be used for parts of this.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!51

Benefits from MOF AS (1/2)

➢ Precise and executable meta-models
➢ a metamodel enhanced with AS should be

sufficient to drive a modelling tool
➢ Programmatic model manipulation

➢ an executable language on top of MOF will allow
programmatic manipulation of MOF-based models
(e.g. UML models)

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!52

Programmatic model manipulation

➢Task automation
➢e.g. a user can define that when an attribute is

added into a UML class, a setter and getter
operation are automatically added

➢Intra-language transformations
➢perform intra-language transformations without

having to define mapping rules for each element of
the modelling language

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!53

Challenges

➢MOF has gone through a major revision
recently (MOF 2.0)
➢Consequently, it is doubtful that MOF can be

changed again (soon) to include AS
➢Also MOF 2.0 is already 110+ classes; can we add 60

more for AS and get away with it?
➢OMG should standardize a concrete AS

language to facilitate interoperability between
tools
➢debatable whether there is enough motivation for it

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!54

Transformations and Mappings 
Uses of MOF in Practice

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!55

MDA in Practice

➢ There are three key techniques used in
applying MDA in practice:
➢ metamodelling (which is usually done by experts

prior to systems development, using MOF-based
languages);

➢ modelling (done by systems engineers, using UML-
based languages);

➢ transformations between models (using QVT).
➢ Let’s see an example of transformations.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!56

Example - Transformations with ATL

➢ ATL (Atlas Transformation Language)
➢ A declarative and imperative language for

expressing model transformations.
➢ Transformations are expressed as a set of rules

on metamodels.
➢ Metamodel for source and target language.

➢ But transformations are themselves models, and
have a metamodel.

➢ This means that you can define transformations on
transformations!

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!57

Example: UML to Java

➢ Transform a simple subset of UML into Java
using ATL.

➢ Need a simple UML metamodel and a simple
Java metamodel.

➢ Also need a set of transformation rules.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!58

Source UML Metamodel

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!59

Target Java Metamodel

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!60

Rules (Informal)
➢ For each UML Package instance, a Java Package instance has to be created.

➢ Their names have to correspond. However, in contrast to UML Packages which hold
simple names, the Java Package name contains the full path information. The path
separation is a point “.”.

➢ For each UML Class instance, a JavaClass instance has to be created.
➢ Their names have to correspond.
➢ The Package reference and Modifiers have to correspond.

➢ For each UML DataType instance, a Java PrimitiveType instance has to be
created.
➢ Their names have to correspond.
➢ The Package reference has to correspond.

➢ For each UML Attribute instance, a Java Field instance has to be created.
➢ Their names, Types, and Modifiers have to correspond.
➢ The Classes have to correspond.

➢ For each UML Operation instance, a Java Method instance has to be
created (similar to above)

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!61

ATL Rules (Examples)
rule P2P {

from e : UML!Package (e.oclIsTypeOf(UML!Package))
to out : JAVA!Package (

name <- e.getExtendedName()
)

}

rule C2C {
from e : UML!Class
to out : JAVA!JavaClass (

name <- e.name,
isAbstract <- e.isAbstract,
isPublic <- e.isPublic(),
package <- e.namespace

)
}

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!62

ATL Rules (Examples)
rule O2M {

from e : UML!Operation
to out : JAVA!Method (

name <- e.name,
isStatic <- e.isStatic(),
isPublic <- e.isPublic(),
owner <- e.owner,
type <- e.parameter->select(x|x.kind=#pdk_return)->

asSequence()->first().type,
parameters <- e.parameter->select(x|x.kind<>#pdk_return)->

asSequence()
)

}
➢ Sometimes need to define “helpers” (intermediate functions) to simplify

specifications.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!63

Compositions

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!64

Model Compositions

➢ Also (somewhat confusingly) called
➢ model merging
➢ model integration
➢ model unification

➢ Basic idea: combining two (or more) distinct
models into a single model.

➢ e.g., combining two UML class diagrams into a
single class diagram.

➢ e.g., combining two or more XML schemas into a
single XML schema.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!65

Why Is Composition Useful?

➢ To support teamwork.
➢ Different individuals working on the same model at the same

time.
➢ Need to reconcile these different versions.

➢ To support the “MDA vision”.
➢ PIM + PDM leads to PSM.

➢ To support flexible styles of modelling.
➢ e.g., adding exception modelling or traceability capacity to a

system.
➢ Construct a “traceability” metamodel or an “exception”

metamodel and merge it with a system model.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!66

Why Is Composition Hard?

➢ It’s all about resolving inconsistencies.

-name : String
-staff : Integer

School

-name : String
-age : Integer

Student

1 *

-schoolname : string(idl)
-staff : Integer
-budget : double(idl)

School

-surname : string(idl)
-age : Integer

Pupil

1 *

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!67

Some Composition Issues

➢ How to identify model elements that match?
➢ How to identify model elements that conform

(e.g., based on semantic properties)?
➢ How to deal with model elements for which no

equivalent exists (e.g., extra attributes)?
➢ How to deal with clashes?
➢ Conclusion: It’s impossible to automatically merge

models.
➢ A language is needed to describe when elements match,

conform, clash, etc.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!68

Epsilon Merging Language

➢ EML is one approach to merging models.
➢ Developed here at York.

➢ There are others, e.g., Atlas Model Weaver, and the
Glue Generator Tool.

➢ EML is more of a programmatic solution than AMW or
GGT.

➢ Currently supports MOF 1.x (via MDR), EMF/EMOF, and
XML-based metamodels, but there is no restriction as
to repository/metamodelling framework.

➢ http://www.cs.york.ac.uk/~dkolovos/epsilon

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!69

EML Overview

➢ The Epsilon Merging Language (EML) is a language
that supports the previously identified phases of
model merging

➢ The EML uses a generic model management
language, called EOL, as an infrastructure
language.
➢ EOL is like OCL, but it also supports model modification,

and is not restricted to MOF-based languages.
➢ Therefore EML can be used to merge different

types of models.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!70

Phases of Model Merging
➢Compare

➢Discover the corresponding concepts in the source
models

➢Conform
➢Resolve conflicts and align models to make them

compatible for integration
➢Merge

➢Merge common concepts of the source models and port
non-matching concepts

➢Restructure
➢Restructure the merged model so that it is semantically

consistent

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!71

Structure of an EML Specification

➢ An EML specification consists of three kinds
of rules:
➢ Match rules
➢ Merge rules
➢ Transform rules
➢ It also contains a pre and a post block that are

executed before and after the merging
respectively to perform tasks that are not
pattern-based

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!72

Structure of Match Rules

➢Each Match Rule has a unique name, and two meta-class names
as parameters

➢A Match Rule can potentially extend one or more other Match
Rules and/or be declared as abstract

➢ It is composed of a Guard, a Compare and a Conform part and
is executed for all pairs of instances of the two meta-classes
in the source models
➢The Guard part is a constraint for the elements the rule applies to (i.e.,

a boolean expression)
➢The Compare part decides on whether the two instances match using a

minimum set of criteria (side-effect free)
➢ For matching instances, the Conform part decides on whether the

instances fully conform with each other (side-effect free)
➢The scheduler executes compare rules, then conform rules.

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!73

Example Match Rules

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!74

Categories of Model Elements
➢ After the execution of the match rules, 4 categories of

model elements are identified:
1. Elements that match and conform to elements of the opposite

model
2. Elements that match but do not conform to elements of the

opposite model.
– Existence of this category of elements triggers cancellation of the

merging process.
3. Elements that do not match with any elements of the opposite

model
– A transform rule is applied to port these elements to the target

metamodel.
4. Elements on which no matching rule has applied

– Existence of this category of elements triggers warnings

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!75

After Matching…

➢ Elements of Category 1 (matching and conforming)
will be merged with their match.
➢ The specification of merging is defined in a Merge Rule

➢ Elements of Categories 3 and 4 (not matching) will be
transformed into model elements compatible with the
target metamodel.
➢ The specification of transformation is defined in a

Transform Rule
➢ Additionally, elements in category 4 generate warnings

(useful feedback in terms of whether or not a set of rules is
“complete”).

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!76

Structure of Merge Rules

➢Each Merge Rule is defined using a unique name, two meta-
class names as parameters and the meta-class of the
model element that the rule creates in the target model

➢ It can extend other Merge Rules and/or be declared as
abstract

➢ For all pairs of matching instances of the two meta-
classes that satisfy the Guard of the rule, the rule is
executed and an empty model element is created in the
target model

➢The contents of the newly created model element are
defined by the body of the Merge Rule

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!77

Example Merge Rules

➢ The equivalent() operation returns the equivalent of the
model element, on which it is applied, in the target model

➢ The equivalent of an element is the result of a Merge
Rule if the element has a matching element in the
opposite model; else it is the result of a Transform Rule

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!78

Structure of Transform Rules

➢Each Transform Rule is defined using a unique name, a meta-
classes, instances of which it can transform and a meta-class
that declares the type of the target of the transformation

➢Transform rules can also extend other Transform Rules and/
or be declared as abstract

➢For all instances of the meta-classes that have no matching
elements in the opposite model, and for which the Guard is
satisfied, the rule is executed and an empty model element
(of the declared meta-class) is created

➢The contents of the newly created element are defined by
the body of the Transform Rule

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!79

Example Transform Rules

➢ Note that Uml!Class refers to both instances of Left!
Class and Right!Class since Left and Right have been
declared to follow the Uml metamodel

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!80

Further Automating Model Merging

➢ EML makes it feasible to merge any pair of models
➢ However, writing the full merging specification by

hand is not always practical. Useful information can
be obtained from elsewhere

➢ For example in the case the source and the target
models are of the same meta-model (e.g. all are UML
models), merging and transformation rules can be
inferred by the structure of the meta-model

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!81

Merging Strategies

➢ Inference of rules that are not explicit in the merging
specification is performed by Merging Strategies.

➢ Each merging strategy defines two methods:
➢ autoMerge(left:Object, right:Object) : Object
➢ autoTransform(source:Object) : Object

➢ Each instance of the EML engine has a related
MergingStrategy. In case it needs to match merge or
transform specific elements for which no rule has been
defined, it uses the behaviour defined in its
MergingStrategy

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!82

The MOF/EMF Common Metamodel Strategy
➢ An example MergingStrategy we have implemented

provides support for models of the same (either MOF or
EMF) meta-model. Its functionality follows:
➢ autoMerge

➢Can merge two instances of the same meta-class.
➢Creates a new instance of the meta-class in the target model.
➢For single-valued features of the meta-class it uses the values

defined in the instance from the left model
➢For multi-valued features it uses the union of the values of the left

and right instances
➢ autoTransform

➢Creates a deep copy of the source model element in the target
model

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!83

Overriding the Strategy behavior

➢ As we mentioned, the behavior defined in the Merging
Strategy is invoked when no rule has been explicitly
defined in the specification

➢ This always allows the developer to override the default
behavior

➢ The use of the auto keyword in EML Merge and
Transform rules also allows the developer to complement
the strategy behavior

➢ By using the auto keyword, the engine first runs the
strategy behavior and then the explicit behavior

 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!84

Example of overriding behavior

➢ The behavior of the strategy merges the two
instances and since name is a single-valued feature,
it uses the name of the left instance as the name of
the merged instance

➢ The above displayed rule overrides this behavior and
sets the name of the merged instance to left.name +
‘and’ + right.name

