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Context of this work

• The present courseware has been elaborated in the context of the 
MODELWARE European  IST FP6 project (http://www.modelware-
ist.org/). 

• Co-funded by the European Commission, the MODELWARE project 
involves 19 partners from 8 European countries. MODELWARE 
aims to improve software productivity by capitalizing on techniques 
known as Model-Driven Development (MDD). 

• To achieve the goal of large-scale adoption of these MDD 
techniques, MODELWARE promotes the idea of a collaborative 
development of courseware dedicated to this domain.  

• The MDD courseware provided here with the status of open source 
software is produced under the EPL 1.0 license. 

http://www.modelware-ist.org/bb2Forum/index.php
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Intended Audience

➢ Have some experience with Model-Driven 
Development. 

➢ Are aware of, but may not be familiar with, 
the relevant OMG/MDD standards. 

➢ Are interested in learning more about 
language development and implementation.
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Refresher
➢ Recall the OMG metamodel architecture.

metamodel

model

“the real world"

metameta 
model

Meta-Object Facility (MOF)

The UML metamodel and other MM’s

UML models and other M’s

Various usages of these models

M0

M1

M2

M3
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MOF

➢ MOF = Meta-Object Facility 
➢ A metadata management framework. 
➢ A language to be used for defining languages. 

➢ i.e., it is an OMG-standard metamodelling language. 
➢ The UML metamodel is defined in MOF. 

➢ MOF 2.0 shares a common core with UML 2.0. 
➢ Simpler rules for modelling metadata. 
➢ Easier to map from/to MOF. 
➢ Broader tool support for metamodelling (i.e., any UML 2.0 tool 

can be used). 

➢ How has MOF come to be?
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Fragments of a UML metamodel

UML
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Stages in the Evolution of Languages at the OMG. 

UML MOF

UMLaModel

aModel

MOF

UML

UML_for_CORBA

aModel

SPEM Workflow etc.

Common Warehouse  
Metadata

Action  language 

(a) (b) (c)
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The MDA meta-model stack

- One unique Meta-Meta-model (the MOF) 
- An important library of compatible Meta-models 
- Each of the models 
 is defined in the language of its unique meta-model

Université de NANTES

M1, M2 & M3 spaces

M3

M2

M1

M2

M1

M2

M1 M1M1
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MOF Evolution

➢ MOF has evolved through several versions. 

➢ MOF 1.x is the most widely supported by tools. 

➢ MOF 2.0 is the current standard, and it has been 
substantially influenced by UML 2.0. 

➢ MOF 2.0 is also critical in supporting 
transformations, e.g., QVT and Model-to-text. 

➢ We will carefully clarify which version of MOF we 
are presenting. 

➢Important lessons can be learned by considering each version.
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Principal Diagram - MOF 1.x

...

Namespace

Classifier

MOF

Contains

Model

ModelElement

...

0..*

0..1

Class

basedOn

meta-entity

1

0..* entity

instanceOf

Package1

0..*
model

meta-model

containedElement

container
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MOF 1.x
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MOF 1.x Key Abstract Classes
➢ModelElement is the common base Class of all M3-level Classes. 

➢Every ModelElement has a name 

➢Namespace is the base Class for all M3-level Classes that need to act 
as containers 

➢GeneralizableElement is the base Class for all M3-level Classes that 
support generalization (i.e., inheritance in OOP) 

➢TypedElement is the base Class for M3-level Classes such as 
Attribute, Parameter, and Constant  
➢Their definition requires a type specification 

➢Classifier is the base Class for all M3-level Classes that (notionally) 
define types.  
➢Examples of Classifier include Class and DataType



 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!13

The MOF 1.x Model - 
Main Concrete Classes

➢The key concrete classes (or meta-metaclasses) of 
MOF are as follows: 

➢Class 
➢Association 
➢Exception (for defining abnormal behaviours) 
➢Attribute 
➢Constant 
➢Constraint
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The MOF 1.x Model: Key associations
➢Contains: relates a ModelElement to the Namespace 

that contains it 

➢Generalizes: relates a GeneralizableElement to its 
ancestors (superclass and subclass) 

➢IsOfType: relates a TypedElement to the Classifier 
that defines its type 
- An object is an instance of a class 

➢DependsOn: relates a ModelElement to others that its 
definition depends on 
- E.g. a package depends on another package
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MOF 2.0 Relationships
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MOF 2.0 Relationships (II)
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MOF 2.0 Structure

➢ MOF is separated into Essential MOF (EMOF) and 
Complete MOF (CMOF). 

➢ EMOF corresponds to facilities found in OOP and 
XML. 
➢ Easy to map EMOF models to JMI, XMI, etc. 

➢ CMOF is what is used to specify metamodels for 
languages such as UML 2.0. 
➢ It is built from EMOF and the core constructs of UML 2.0. 
➢ Really, both EMOF and CMOF are based on variants of UML 

2.0.
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EMOF Core Classes
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CMOF Core Constructs
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MOF Implementations

➢ Most widely known/used is EMF/ECore within Eclipse. 
➢ It is mostly compatible with MOF 1.x, and allows importing 

EMOF metamodels via XMI. 
➢ The XMF-Mosaic tool from Xactium implements ExMOF 

(Executable MOF) which subsets and extends MOF 1.x. 
➢ UML2MOF from Sun is a transformation from UML 

metamodels to MOF 1.x metamodels (with some bugs). 
➢ Sun MDR implementation. 
➢ Commercial implementations from Adaptive, Compuware, 

possibly MetaMatrix, MEGA, Unicorn.
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Towards Tool Support



 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!22

1. It’s not totally vaporware -- tools exist! 
2. Programmers know that generating repeated code is 

eminently feasible. 
• MDA will pave the way for even more complex systems 
• The Generative Programming people have realised this for 

ages. 

3. Smart people recognize many of the arguments 
against MDA were also used to oppose high-level 
languages vs. assembly language

Why Should We Care about MDA?
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➢ Contrary to most programmers’ beliefs, modelling can be useful 
for more than just documentation 

➢ Just about every program we write manipulates some data 
model 
➢ It might be defined using Java, UML, XML Schemas, or some other 

definition language 
➢ EMF aims to extract this intrinsic "model" and generate some 

of the implementation code  
➢ Can be a tremendous productivity gain. 

➢ EMF is one implementation of MOF (though it has differences). 
➢ We cannot claim that EMF = MOF!

MDD with EMF
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➢ Specification of an application’s data 
➢ Object attributes 
➢ Relationships (associations) between objects 
➢ Operations available on each object 
➢ Simple constraints (e.g., multiplicity) on objects and 

relationships 
➢ Essentially the Class Diagram subset of UML

EMF Model Definition
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➢ EMF models can be defined in (at least) three 
ways:  
1. Java interfaces 
2. UML Class Diagram 
3. XML Schema 

➢ Choose the one matching your perspective or 
skills, and EMF can generate the others as well 
as the implementation code

EMF Model Definition
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public interface PurchaseOrder { 
  String getShipTo(); 
  void setShipTo(String value); 
  String getBillTo(); 
  void setBillTo(String value); 
  List getItems(); // List of Item 
} 

public interface Item { 
  String getProductName(); 
  void setProductName(String value); 
  int getQuantity(); 
  void setQuantity(int value); 
  float getPrice(); 
  void setPrice(float value); 
}

EMF Model Definition  
Java interfaces
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PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EMF Model Definition - UML class 
diagrams
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<xsd:complexType name="PurchaseOrder"> 
 <xsd:sequence> 
  <xsd:element name="shipTo" type="xsd:string"/> 
  <xsd:element name="billTo" type="xsd:string"/> 
  <xsd:element name="items"  type="PO:Item"  
               minOccurs="0" maxOccurs="unbounded"/> 
 </xsd:sequence> 
</xsd:complexType> 

<xsd:complexType name="Item"> 
 <xsd:sequence> 
  <xsd:element name="productName" type="xsd:string"/
> 
  <xsd:element name="quantity" type="xsd:int"/> 
  <xsd:element name="price" type="xsd:float"/> 
 </xsd:sequence> 
</xsd:complexType>

EMF Model Definition - XML
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Unifying Java, XML, and UML technologies

EMF Model Definition

➢ All three forms provide the same information 
➢ Different visualization/representation 
➢ The application’s “model” of the structure 

➢ From a model definition, EMF can generate: 
➢ Java implementation code, including UI 
➢ XML Schemas 
➢ Eclipse projects and plug-ins
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EMF Architecture 
Model Import and Generation

I 
M 
P 
O 
R 
T

GENERATE

Ecore 
Model

UML

XML 
Schema

Java 
model

Java 
edit

Generator 
features: 

➢ Customizable 
JSP-like 
templates 
(JET) 

➢ Command-line 
or integrated 
with Eclipse 
JDT 

➢ Fully supports 
regeneration 
and merge

Java 
editor* * requires Eclipse to 

run

Java 
model
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➢ Ecore is EMF’s model of a model (metamodel) 
➢ Persistent representation is XMI

EMF Architecture - Ecore

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1



 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!32

EMF Architecture - 
PurchaseOrder Ecore Model

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType
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<eClassifiers xsi:type="ecore:EClass" 
  name="PurchaseOrder"> 
 <eReferences name="items" eType="#//Item"  
   upperBound="-1" containment="true"/> 
 <eAttributes name="shipTo"  
   eType="ecore:EDataType http:...Ecore#//EString"/
> 
 <eAttributes name="billTo"  
   eType="ecore:EDataType http:...Ecore#//EString"/
> 
</eClassifiers>

EMF Architecture - 
PurchaseOrder Ecore XMI

➢ Alternate serialization format is EMOF 
➢ Part of MOF 2.0 Standard as we saw earlier
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EMF Dynamic Architecture
➢Given an Ecore model, EMF also supports 

dynamic manipulation of instances 
➢No generated code required 
➢Dynamic implementation of reflective EObject 

API provides same runtime behavior as generated 
code 

➢Also supports dynamic subclasses of generated 
classes 

➢All EMF model instances, whether generated 
or dynamic, are treated the same by the 
framework
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EMF Architecture - Users

➢ IBM WebSphere/Rational product family 
➢ Other Eclipse projects (XSD, UML2, VE, 

Hyades) 
➢ ISV’s (TogetherSoft, Ensemble, Versata, 

Omondo, and more) 
➢ SDO reference implementation 
➢ Large open source community
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public String getShipTo() { 
  return shipTo; 
} 

public void setShipTo(String newShipTo) { 
  String oldShipTo = shipTo; 
  shipTo = newShipTo; 
  if (eNotificationRequired()) 
    eNotify(new ENotificationImpl(this, ... ); 
}

Code Generation - Feature Change

➢Efficient notification from “set” methods 
➢Observer Design Pattern
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public interface EObject { 
  Object eGet(EStructuralFeature f); 
  void eSet(EStructuralFeature f, Object v); 
  ... 
}

Code Generation
➢All EMF classes implement interface 

EObject 
➢Provides an efficient API for manipulating 

objects reflectively 
➢Used by the framework (e.g., generic serializer, 

copy utility, generic editing commands, etc.) 
➢Also key to integrating tools and applications 

built using EMF 
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Related Standards

➢ There is actually a family of standards related to MOF. 
➢ MOF 2.0 Versioning: 

➢ for managing multiple, co-existing versions of metadata, and 
allowing inclusion in different systems in different 
configurations. 

➢ MOF 2.0 Facility and Object Lifecycle: 
➢ Models object creation/deletion, move, comparison 
➢ Also models events that may be interesting. 

➢ MOF 2.0 QVT. 
➢ MOF Model-to-Text 
➢ XMI.
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MOF 2.0 Action Semantics

➢ What is Action Semantics? 
➢ Current practice and limitations in capturing behaviour 

in MOF models 
➢ MOF 2.0 Action Semantics  

➢ MOF AS Abstract syntax 
➢ Towards a MOF AS Concrete syntax 

➢ Benefits, i.e., programmatic manipulation of models. 
➢ Note: not a standard, evolving work, currently building 

a prototype implementation in Epsilon framework.
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What is Action Semantics?

➢ Structural semantics capture the structural 
properties of a model  
➢ i.e., the model elements and their structural relationships 

➢ Action semantics capture the behavior of a model  
➢ i.e., how the model behaves 

➢ Actions semantics has been proposed for UML 2.0. 
➢ Variants appear in Executable UML work from Mellor et al. 

➢ This has not addressed action semantics at the meta-
metalevel, i.e., MOF 2.0.
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Capturing behaviour in MOF

➢In MOF models, behaviour is defined through 
operations 

➢OCL post-conditions can be used to define 
effects of the execution of an operation on 
the model 
➢Post-conditions define the effects rather than how 

they are achieved 
➢Allows flexibility in the implementation of the body 

of the operation
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Limitations of post-conditions

➢ Cannot capture invocation of other operations 
➢ i.e., how do you say, in the post-condition, that another 

operation must be triggered? 
➢ This requires some notion of call semantics. 

➢ Cannot capture algorithmic details necessary for 
efficiency. 
➢ e.g., you can specify that an operation sorts data, but how do 

you capture time bounds? 
➢ Insufficient for simulation/execution 

➢ Only some post-conditions can actually be simulated (OCL in 
general is not fully executable).
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MOF Action Semantics (AS)

➢Extend MOF so that the we can capture 
actions performed  
➢by invocation of operations 
➢as response to model events  
➢e.g. instance creation, attribute value update 

➢In order to achieve this we need 
➢Abstract syntax 
➢Concrete syntax (that implements the abstract 

syntax)
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Actions

➢Perform mathematical computations (Arithmetic, String, 
Boolean expressions) 

➢Control execution flow (if, for, while control structures etc) 
➢Create/Select/Delete object instances 
➢Read/Write instance attribute values 
➢Create/Delete relationships instances 
➢Navigate relationships 
➢Invoke other operations 

➢cf., UML 2.0 Action Semantics
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MOF AS Abstract Syntax

➢Use the existing UML AS abstract syntax 
as a base 
➢Port the “actions” and “activities” package of the 

“UML” package into the “MOF” package 
➢Update the “operation” meta-class 
➢Update ported meta-classes to match MOF 

modelling elements (instead of UML) 
➢Remove classes that do not fit the MOF level of 

abstraction
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Abstract Syntax: Package

➢ AS is a restriction of UML 2.0 AS.
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Abstract Syntax
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Abstract Syntax Details
➢ An Operation has multiple possible behaviours.  

➢ Activities are behaviours, and the activity graph is captured 
using ActivityNode and ActivityEdge.  

➢ A special kind of ActivityNode is an ExecutableNode, which 
may have a number of ExceptionHandlers, each of which also 
have ExecutableNodes.  

➢ An Action is both an ActivityNode and an 
ExecutableNode.  
➢ Generalizations of Action will provide the computational 

behaviour needed to write action programs.  
➢ Finally, an Action has input and output PINs.  

➢ Concrete syntax for the MOF action semantics is 
contained within the OpaqueBehavior. 
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AS Notes

➢ Possible to simplify this structure further by inferring 
the Activity graph (i.e., ActivityNode and 
ActivityEdge):  
➢ Actions know their precursor and successor, which can be used 

to implicitly extract the information encoded in nodes and 
edges.  

➢ This closely mimics trace semantics, as seen, for example in 
Communicating Sequential Processes.  

➢ Computational behaviour is captured via generalization 
of the Action metaclass. 
➢ UML 2.0 contains approx 60 metaclasses for this.  
➢ We can add everything - trivially - but then MOF 2.0 + AS is 170 

or so classes; is this worthwhile?
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MOF AS Concrete Syntax
➢Abstract AS is useful as foundation but insufficient.  
➢Need a concrete language 
➢We propose the use of a procedural (C-style) language like 

➢Kabira Action Semantics, BridgePoint Object Action Language, KC 
Action Specification Language 

➢… but instead of proprietary model-querying expressions, 
integrate support for OCL statements 

➢No point creating a new language until UML 2.0 is 
stabilized. 
➢However, we have developed the Epsilon Object Language which 

could be used for parts of this.



 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!51

Benefits from MOF AS (1/2)

➢ Precise and executable meta-models 
➢ a metamodel enhanced with AS should be 

sufficient to drive a modelling tool 
➢ Programmatic model manipulation 

➢ an executable language on top of MOF will allow 
programmatic manipulation of MOF-based models 
(e.g. UML models) 
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Programmatic model manipulation

➢Task automation 
➢e.g. a user can define that when an attribute is 

added into a UML class, a setter and getter 
operation are automatically added 

➢Intra-language transformations 
➢perform intra-language transformations without 

having to define mapping rules for each element of 
the modelling language
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Challenges

➢MOF has gone through a major revision 
recently (MOF 2.0) 
➢Consequently, it is doubtful that MOF can be 

changed again (soon) to include AS 
➢Also MOF 2.0 is already 110+ classes; can we add 60 

more for AS and get away with it? 
➢OMG should standardize a concrete AS 

language to facilitate interoperability between 
tools 
➢debatable whether there is enough motivation for it



 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!54

Transformations and Mappings 
Uses of MOF in Practice
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MDA in Practice

➢ There are three key techniques used in 
applying MDA in practice: 
➢ metamodelling (which is usually done  by experts 

prior to systems development, using MOF-based 
languages); 

➢ modelling (done by systems engineers, using UML-
based languages); 

➢ transformations between models (using QVT). 
➢ Let’s see an example of transformations.
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Example - Transformations with ATL

➢ ATL (Atlas Transformation Language) 
➢ A declarative and imperative language for 

expressing model transformations. 
➢ Transformations are expressed as a set of rules 

on metamodels. 
➢ Metamodel for source and target language. 

➢ But transformations are themselves models, and 
have a metamodel. 

➢ This means that you can define transformations on 
transformations!
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Example: UML to Java

➢ Transform a simple subset of UML into Java 
using ATL. 

➢ Need a simple UML metamodel and a simple 
Java metamodel. 

➢ Also need a set of transformation rules.
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Source UML Metamodel
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Target Java Metamodel
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Rules (Informal)
➢ For each UML Package instance, a Java Package instance has to be created. 

➢ Their names have to correspond. However, in contrast to UML Packages which hold 
simple names, the Java Package name contains the full path information. The path 
separation is a point “.”. 

➢ For each UML Class instance, a JavaClass instance has to be created. 
➢ Their names have to correspond. 
➢ The Package reference and Modifiers have to correspond. 

➢ For each UML DataType instance, a Java PrimitiveType instance has to be 
created. 
➢ Their names have to correspond. 
➢ The Package reference has to correspond. 

➢ For each UML Attribute instance, a Java Field instance has to be created. 
➢ Their names, Types, and Modifiers have to correspond. 
➢ The Classes have to correspond. 

➢ For each UML Operation instance, a Java Method instance has to be 
created (similar to above)
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ATL Rules (Examples)
rule P2P {

from e : UML!Package (e.oclIsTypeOf(UML!Package))
to out : JAVA!Package (

name <- e.getExtendedName()
)

}

rule C2C {
from e : UML!Class
to out : JAVA!JavaClass (

name <- e.name,
isAbstract <- e.isAbstract,
isPublic <- e.isPublic(),
package <- e.namespace

)
}
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ATL Rules (Examples)
rule O2M {

from e : UML!Operation
to out : JAVA!Method (

name <- e.name,
isStatic <- e.isStatic(),
isPublic <- e.isPublic(),
owner <- e.owner,
type <- e.parameter->select(x|x.kind=#pdk_return)->

asSequence()->first().type,
parameters <- e.parameter->select(x|x.kind<>#pdk_return)->

asSequence()
)

}
➢ Sometimes need to define “helpers” (intermediate functions) to simplify 

specifications.
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Compositions
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Model Compositions

➢ Also (somewhat confusingly) called  
➢ model merging 
➢ model integration 
➢ model unification 

➢ Basic idea: combining two (or more) distinct 
models into a single model. 

➢ e.g., combining two UML class diagrams into a 
single class diagram. 

➢ e.g., combining two or more XML schemas into a 
single XML schema.
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Why Is Composition Useful?

➢ To support teamwork. 
➢ Different individuals working on the same model at the same 

time. 
➢ Need to reconcile these different versions. 

➢ To support the “MDA vision”. 
➢ PIM + PDM leads to PSM. 

➢ To support flexible styles of modelling. 
➢ e.g., adding exception modelling or traceability capacity to a 

system. 
➢ Construct a “traceability” metamodel or an “exception” 

metamodel and merge it with a system model.
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Why Is Composition Hard?

➢ It’s all about resolving inconsistencies.

-name : String
-staff : Integer

School

-name : String
-age : Integer

Student

1 *

-schoolname : string(idl)
-staff : Integer
-budget : double(idl)

School

-surname : string(idl)
-age : Integer

Pupil

1 *
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Some Composition Issues

➢ How to identify model elements that match? 
➢ How to identify model elements that conform 

(e.g., based on semantic properties)? 
➢ How to deal with model elements for which no 

equivalent exists (e.g., extra attributes)? 
➢ How to deal with clashes? 
➢ Conclusion: It’s impossible to automatically merge 

models. 
➢ A language is needed to describe when elements match, 

conform, clash, etc.
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Epsilon Merging Language

➢ EML is one approach to merging models. 
➢ Developed here at York. 

➢ There are others, e.g., Atlas Model Weaver, and the 
Glue Generator Tool. 

➢ EML is more of a programmatic solution than AMW or 
GGT. 

➢ Currently supports MOF 1.x (via MDR), EMF/EMOF, and 
XML-based metamodels, but there is no restriction as 
to repository/metamodelling framework. 

➢ http://www.cs.york.ac.uk/~dkolovos/epsilon
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EML Overview

➢ The Epsilon Merging Language (EML) is a language 
that supports the previously identified phases of 
model merging 

➢ The EML uses a generic model management 
language, called EOL, as an infrastructure 
language. 
➢ EOL is like OCL, but it also supports model modification, 

and is not restricted to MOF-based languages. 
➢ Therefore EML can be used to merge different 

types of models.
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Phases of Model Merging
➢Compare 

➢Discover the corresponding concepts in the source 
models 

➢Conform 
➢Resolve conflicts and align models to make them 

compatible for integration 
➢Merge 

➢Merge common concepts of the source models and port 
non-matching concepts  

➢Restructure 
➢Restructure the merged model so that it is semantically 

consistent
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Structure of an EML Specification

➢ An EML specification consists of three kinds 
of rules: 
➢ Match rules 
➢ Merge rules 
➢ Transform rules 
➢ It also contains a pre and a post block that are 

executed before and after the merging 
respectively to perform tasks that are not 
pattern-based



 Eclipse ECESIS Project

The Meta-Object Facility (MOF)

!72

Structure of Match Rules

➢Each Match Rule has a unique name, and two meta-class names 
as parameters 

➢A Match Rule can potentially extend one or more other Match 
Rules and/or be declared as abstract 

➢ It is composed of a Guard, a Compare and a Conform part and 
is executed for all pairs of instances of the two meta-classes 
in the source models 
➢The Guard part is a constraint for the elements the rule applies to (i.e., 

a boolean expression) 
➢The Compare part decides on whether the two instances match using a 

minimum set of criteria (side-effect free) 
➢ For matching instances, the Conform part decides on whether the 

instances fully conform with each other (side-effect free) 
➢The scheduler executes compare rules, then conform rules.
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Example Match Rules
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Categories of Model Elements
➢ After the execution of the match rules, 4 categories of 

model elements are identified: 
1. Elements that match and conform to elements of the opposite 

model 
2. Elements that match but do not conform to elements of the 

opposite model.  
– Existence of this category of elements triggers cancellation of the 

merging process. 
3. Elements that do not match with any elements of the opposite 

model 
– A transform rule is applied to port these elements to the target 

metamodel. 
4. Elements on which no matching rule has applied 

– Existence of this category of elements triggers warnings
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After Matching…

➢ Elements of Category 1 (matching and conforming) 
will be merged with their match.  
➢ The specification of merging is defined in a Merge Rule 

➢ Elements of Categories 3 and 4 (not matching) will be 
transformed into model elements compatible with the 
target metamodel.  
➢ The specification of transformation is defined in a 

Transform Rule 
➢ Additionally, elements in category 4 generate warnings 

(useful feedback in terms of whether or not a set of rules is 
“complete”).
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Structure of Merge Rules

➢Each Merge Rule is defined using a unique name, two meta-
class names as parameters and the meta-class of the 
model element that the rule creates in the target model 

➢ It can extend other Merge Rules and/or be declared as 
abstract 

➢ For all pairs of matching instances of the two meta-
classes that satisfy the Guard of the rule, the rule is 
executed and an empty model element is created in the 
target model 

➢The contents of the newly created model element are 
defined by the body of the Merge Rule
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Example Merge Rules

➢ The equivalent() operation returns the equivalent of the 
model element, on which it is applied, in the target model 

➢ The equivalent of an element is the result of a Merge 
Rule if the element has a matching element in the 
opposite model; else it is the result of a Transform Rule
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Structure of Transform Rules

➢Each Transform Rule is defined using a unique name, a meta-
classes, instances of which it can transform and a meta-class 
that declares the type of the target of the transformation 

➢Transform rules can also extend other Transform Rules and/
or be declared as abstract 

➢For all instances of the meta-classes that have no matching 
elements in the opposite model, and for which the Guard is 
satisfied, the rule is executed and an empty model element 
(of the declared meta-class) is created 

➢The contents of the newly created element are defined by 
the body of the Transform Rule
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Example Transform Rules

➢ Note that Uml!Class refers to both instances of Left!
Class and Right!Class since Left and Right have been 
declared to follow the Uml metamodel
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Further Automating Model Merging

➢ EML makes it feasible to merge any pair of models 
➢ However, writing the full merging specification by 

hand is not always practical. Useful information can 
be obtained from elsewhere 

➢ For example in the case the source and the target 
models are of the same meta-model (e.g. all are UML 
models), merging and transformation rules can be 
inferred by the structure of the meta-model 
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Merging Strategies

➢ Inference of rules that are not explicit in the merging 
specification is performed by Merging Strategies. 

➢ Each merging strategy defines two methods: 
➢ autoMerge(left:Object, right:Object) : Object 
➢ autoTransform(source:Object) : Object 

➢ Each instance of the EML engine has a related 
MergingStrategy. In case it needs to match merge or 
transform specific elements for which no rule has been 
defined, it uses the behaviour defined in its 
MergingStrategy
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The MOF/EMF Common Metamodel Strategy
➢ An example MergingStrategy we have implemented 

provides support for models of the same (either MOF or 
EMF) meta-model. Its functionality follows: 
➢ autoMerge  

➢Can merge two instances of the same meta-class.  
➢Creates a new instance of the meta-class in the target model. 
➢For single-valued features of the meta-class it uses the values 

defined in the instance from the left model 
➢For multi-valued features it uses the union of the values of the left 

and right instances 
➢ autoTransform 

➢Creates a deep copy of the source model element in the target 
model
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Overriding the Strategy behavior

➢ As we mentioned, the behavior defined in the Merging 
Strategy is invoked when no rule has been explicitly 
defined in the specification 

➢ This always allows the developer to override the default 
behavior 

➢ The use of the auto keyword in EML Merge and 
Transform rules also allows the developer to complement 
the strategy behavior 

➢ By using the auto keyword, the engine first runs the 
strategy behavior and then the explicit behavior
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Example of overriding behavior

➢ The behavior of the strategy merges the two 
instances and since name is a single-valued feature, 
it uses the name of the left instance as the name of 
the merged instance 

➢ The above displayed rule overrides this behavior and 
sets the name of the merged instance to left.name + 
‘and’ + right.name


